CAS9 from S. aureus
Chicken Polyclonal Antibody

CPCA-CAS9-SA

<table>
<thead>
<tr>
<th>Applications</th>
<th>Host</th>
<th>Isotype</th>
<th>Molecular Wt.</th>
<th>Species Cross-Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB, IF, ICC, IHC</td>
<td>Chicken</td>
<td>IgY</td>
<td>124kDa</td>
<td>Sa</td>
</tr>
</tbody>
</table>

Western blot analysis of CPCA-CAS9-SA. [1] Lysate of HEK293 cells expressing a fusion protein containing GFP and the C-terminus of CAS9 from S. aureus, [2] Lysate of non-transfected HEK293 cells. The band at about 53kDa corresponds to GFP-CAS9 fusion protein which is absent from non-transfected cells. The CPCA-CAS9-SA antibody was used at 1:1,000 dilution.

Background:

A recent revolution in biology has been stimulated by the discovery of CRISPR, or “Clustered Regularly Interspaced Short Palindromic Repeats” and the understanding of the “CRISPR Associated” enzymes (CAS 1, 2). The CRISPR repeated sequences are found in bacterial genomes and function as part of unique bacterial immune system which contain short DNA sequences derived from viruses which have infected the bacteria. These virally derived sequences can make short RNA sequences which can hybridize with specific viral DNA and target a nuclease, such as CAS9, to the viral sequence. So CAS9 is directed to cleave the specific viral sequence and so inactivate the virus. The RNA sequence can be designed to specifically cut DNA virtually anywhere, including in the genomes of living human and other mammalian cells, allowing inexpensive gene editing with unprecedented ease. For example three groups of researchers essentially cured the disease state in a mouse model of Duchenne muscular dystrophy (3-5). A similar approach essentially cured dogs affected with a related disease state (6). Several varieties of CAS9 have been studied and there are several other related enzymes with similar properties. Much of the early work was performed with CAS9 from Streptococcus pyogenes which is rather large at ~158kDa, so the corresponding DNA is also rather large at about 4.2kb. This is problematic with some expression systems especially since DNA encoding RNA sequences and possibly other regulatory elements are usually required. The CAS9 gene of Staphylococcus aureus is significantly smaller, 3kb, producing a protein of 124kDa (6). For an excellent recent review of the various CAS family enzymes and their utility see reference 8.

The CPCA-CAS9-SA antibody was raised against the C-terminal 250 amino acids of S. aureus CAS9 in the sequence CCK74173. It can be used to verify expression of S. aureus CAS9 in cells and tissues. The antibody does not bind S. pyogenes CAS9 due to the low level of sequence homology. We used the same immunogen to generate a rabbit polyclonal and a mouse monoclonal to S. aureus, RPCA-CAS9-SA and MCA-6F7.

References:

Abbreviation Key:

- mAb—Monoclonal Antibody
- pAb—Polyclonal Antibody
- WB—Western Blot
- IF—Immunofluorescence
- ICC—Immunocytochemistry
- IHC—Immunohistochemistry
- ELISA—Enzyme-Linked Immunosorbent Assay
- MCA—Mouse Monoclonal Antibody
- MCA-6F7—Mouse monoclonal to S. aureus
- CPCA-CAS9-SA—Chicken polyclonal to S. aureus