Green Fluorescent Protein
Goat Polyclonal Antibody

Applications
WB, IF/ICC, IHC

Host
Goat

Isotype
IgG

Molecular Wt.
~27kDa

Species
NA

RRID: AB_2737371

Description
The green fluorescent protein (GFP) is a 27kDa protein isolated originally from the jellyfish Aequoria victoria. It has an endogenous fluorochrome activity with excitation maximum at 395nm and emission maximum at 509nm, which is similar to that of fluorescein (1,2). The GFP gene was cloned and sequenced and the origin of the fluorochrome by autocatalytic activity of certain amino acids was discovered (3,4). Much interest in GFP was generated when it was shown that fluorescence develops rapidly when the protein is expressed and requires only molecular oxygen and no other cofactors. As a result GFP can be expressed in fluorescent form in essentially any prokaryotic or eukaryotic cell (5). GFP has been engineered to produce a vast number of variously colored mutants including blue, cyan and yellow protein derivatives, BFP, CFP and YFP (6-9). GFP and other fluorescent proteins derived from jellyfish, coral and other Cnidaria are widely used as tracers and in vitro and in vivo. The crystal structure of GFP was determined (7) which allowed amino acid modifications to improve spectral properties and prevent multimerization (8,9). The 2008 Nobel prize in chemistry was awarded “for the discovery and development of the green fluorescent protein, GFP”.

The GPCA-GFP antibody was made against a recombinant GFP construct originating from an *Aequoria* species which was engineered to improve spectral properties and prevent oligomerization (10). This form of GFP, referred to as AcGFP, is 94% identical to the eGFP developed by Tsien and coworkers and is the form of GFP inserted in the *prot-r-AcGFP* recombinant protein purified from *E. coli*. Format: Purified antibody at 1mg/ml in 50% PBS, 50% glycerol plus 5mM NaF. Storage: Shipped on ice. Store at 4°C. For long term storage, leave frozen at -20°C. Avoid freeze / thaw cycles.

Recommended dilutions:
WB: 1:1,000-5,000
IF/ICC: 1:5,000

References:

Western blot analysis of HEK293 cell lysates using goat pAb to GFP.

**Immunofluorescence analysis of transfected HEK293 cells with a GFP construct in green stained with goat pAb to GFP, GPCA-GFP, dilution 1:1,000, in green: [1] protein standard, [2] non-transfected control cells, [3] cells transfected with a GFP construct and [4] cells transfected with an mCherry construct. Strong band at ~27kDa corresponds to GFP protein detected only in cells transfected with GFP construct. This antibody does not recognize the mCherry protein.

Background:

The green fluorescent protein (GFP) is a 27kDa protein isolated originally from the jellyfish Aequoria victoria. It has an endogenous fluorochrome activity with excitation maximum at 395nm and emission maximum at 509nm, which is similar to that of fluorescein (1,2). The GFP gene was cloned and sequenced and the origin of the fluorochrome by autocatalytic activity of certain amino acids was discovered (3,4). Much interest in GFP was generated when it was shown that fluorescence develops rapidly when the protein is expressed and requires only molecular oxygen and no other cofactors. As a result GFP can be expressed in fluorescent form in essentially any prokaryotic or eukaryotic cell (5). GFP has been engineered to produce a vast number of variously colored mutants including blue, cyan and yellow protein derivatives, BFP, CFP and YFP (6-9). GFP and other fluorescent proteins derived from jellyfish, coral and other Cnidaria are widely used as tracers in transfection and transgenic experiments to monitor gene expression and protein localization in vivo and in vitro. The crystal structure of GFP was determined (7) which allowed amino acid modifications to improve spectral properties and prevent multimerization (8,9). The 2008 Nobel prize in chemistry was awarded “for the discovery and development of the green fluorescent protein, GFP”.

The GPCA-GFP antibody was made against a recombinant GFP construct originating from an *Aequoria* species which was engineered to improve spectral properties and prevent oligomerization (10). This form of GFP, referred to as AcGFP, is 94% identical to the eGFP developed by Tsien and coworkers and is the form of GFP inserted in the *prot-r-AcGFP* recombinant protein purified from *E. coli*.